生命如何從簡單走向複雜- 多細胞生物的誕生

生物學在講甚麼?–周成功老師的探索筆記 (6)

生命大約是38 億年前在地球上出現。最早出現的生命型式應該都是一些構造簡單,肉眼看不到的單細胞生物。但在今天的生命世界中,四處可見都是一些大小、結構各異的多細胞生物。對單細胞生物而言,許多細菌最多只能在一起形成菌落。碰到惡劣環境時,有些細菌會蛻變成孢子,進行冬眠以待時機好轉。它唯一需要知道的只是長或不長,而沒有什麼複雜的發育程式可言。單細胞生物在地球上寂寞地等待了近三十億年,才開始有多細胞生物的同伴出現。多細胞生物為什麼會出現? 二個以上的細胞結合在一起生活有什麼好處?如果多細胞的結合真有什麼了不得的好處,為什麼在它們出現前的二十多億年間,無跡可尋?

生物學-6-1

圖6-1 單細胞阿米巴黏菌以吞食周遭的細菌為生。食物缺乏時,某個黏菌首先會釋放環狀AMP分子到環境中。周圍黏菌偵測到環狀AMP 時會作出兩項反應:一方面也開始釋放環狀AMP 分子到環境中,同時會朝向環狀AMP 濃度高的方向移動。當一大群黏菌聚集成一個多細胞生物的雛型:部分細胞分化成孢子,其他細胞分化後死亡形成支柱,把孢子囊支撐到空中,讓孢子有機會飄送到遠處尋求生路。

當食物供應有限,單獨一個人當然比眾人爭食有利。但是當環境變得更惡劣時,個人能力有限,此時唯有眾人共同合作才能渡過難關。所以多細胞生物演化背後的推手一定是困難的環境。在今天的生物世界中,我們還可以看到類似例子,那就是阿米巴黏菌(圖6-1)。黏菌平時以單細胞的形態活動,吞食環境中的細菌為生。但當環境中食物不足時,第一個察覺到的細胞就會釋放訊號分子。周圍的細胞接受訊號分子的刺激後,會同時產生兩種反應:一是朝向訊號分子濃度高的方向移動;另一方面,自己也同時釋放相同的訊號分子。這時我們就會看到一群黏菌,同步地朝向一個中心點移動聚集,大約十萬隻黏菌聚在一起形成個體。接下來,有一些黏菌形成孢子開始冬眠:剩下的黏菌選擇犧牲小我,自殺身亡後用自己的軀幹結合形成支柱,把孢子囊推向空中,讓孢子有機會被風吹送到適合生存的環境中重新復活。

從黏菌的例子,我們可以總結多細胞生物形成必須具備的條件。第一就是細胞與細胞間必須緊密的結合。像動物細胞彼此用各種不同的黏合蛋白;而植物細胞則依賴細胞壁讓細胞結合。其次,聚集在一起的細胞必須分工。原先看似完全相同的細胞,會遵循特定的遺傳程式,分化成特定結構與功能的細胞,像皮膚、神經、血球等等。一個人的受精卵可以分化出兩佰多種形態、結構、功能各異的分化細胞。第三,不同分化的細胞要依特定的遺傳指令,形成不同的組織、器官到我們的身體。最後,多細胞生物必須發展出特定繁衍後代的生殖方式。

地球上的真核細胞出現在18 億年前,而最早的化石證據顯示,多細胞生物遲至8 億年才出現。在這中間的10 億年中,真核細胞作了些什麼樣的準備?可以想像的是,當真核細胞體積愈來愈大,結構愈變愈複雜,對食物的需求當然也就更為殷切。新配備的出現,像用纖毛幫助游動,過濾水中的細菌等等,都可增強獵食的效率。這些靠獵食為生的細胞,應該是未來多細胞動物的始祖。

但另外有一些真核細胞在食物缺乏而陽光充沛的環境中發現,如果能捕捉一些會行光合作用的細菌與之共生,就不必再費心覓食了!這些靠著陽光自給自足的細胞,還擔心該怎麼保護自己,因此再作出一個全新、不同於細菌細胞壁的細胞壁,從此一個帶著內共生的葉綠體,外有細胞壁的真核細胞:藻類就此誕生。而它也就成了未來多細胞植物的始祖。不能行光合作用,靠獵食為生的動物需要身手靈活,自然不需要配備保護自己的細胞壁。相對而言,植物能行光合作用,自給自足不假外求,配備細胞壁保護自己也是理所當然的。但另外還有一類型的多細胞生物,細胞裡沒有葉綠體,不能行光合作用自食其力,卻又配備了自己獨特與細菌、植物都不同的細胞壁,它該怎麼樣謀生?這種生物必然得寄生,靠著分泌各种酵素到環境中,分解宿主的身體來吸取養分。它的名字叫作真菌。

從單細胞演化成多細胞生物並不是一條容易的路,它除了有許多技術性的問題要解決,像是細胞怎麼結合、分化、發育等等,還有一個問題需要克服,那就是生物自私的本性。像前面提到黏菌的例子,當大家聚集在一起克服惡劣環境,有的人要犧牲小我,將軀體奉獻出來,作為支撐孢子囊的支柱。但會不會有人不想犧牲自己,只想成為未來有可能存活的孢子?

這種投機份子在自然界中當然存在。大自然怎麼對付這些投機份子呢?有一种被動的自然淘汰法則:看你橫行到幾時!當投機者與正常黏菌在一起,碰到惡劣環境時,投機者開始當然會佔正常黏菌的便宜,在孢子囊中成為多數。但是惡劣環境反覆出現,讓愈來愈多的投機者存活,這時候投機者其實是在自掘墳墓。因為當投機者佔了大多數,惡劣環境再來時,沒有人去作支柱。結果是大家一起滅亡!

生物學-6-2

圖6-2 從單細胞演化出多細胞生物的過程中,很多關鍵的轉變與棘輪的運作相似,一旦變了就無法回頭。就好像圖中的棘輪,只能朝順時鐘方向轉動無法回頭一樣。

大自然另一個推動多細胞生物演化的方式類似棘輪的運作(圖6-2),棘輪只會朝一個方向轉動,而不會反向回頭。因此如果生物演化出一些特別的遺傳程式,讓細胞獲得一些獨特的生物特性,而這些生物特性有助於多細胞的運作,但對單一細胞反而有害。所以當單細胞形成多細胞生物後,這些程式會讓多細胞生物得到競爭的優勢。而此刻多細胞生物裡個別的單細胞,縱使環境允許,想離開回復自由之身,就會受到這些程式的制約而不得成行!

細胞會啟動自殺凋亡的程式就是個最好的例子。自殺死亡對單細胞來說是避之唯恐不及,沒有半點好處。但當許多細胞聚集在一起形成多細胞生物時,特定細胞在發育特定階段的死亡,對個體特定結構的形成往往是必要的,想想看我們的手指是怎麼發育出來的?當棘輪運作的機制成為演化背後的驅動力,多細胞生物從簡單走向複雜就成了一條必然的不歸路了!

 

參考讀物
1.  生物學在講甚麼?–周成功老師的探索筆記 (1) http://shs.ntu.edu.tw/shsblog/?p=32713

2. 生物學在講甚麼?–周成功老師的探索筆記 (2) http://shs.ntu.edu.tw/shsblog/?p=32717

3. 生物學在講甚麼?–周成功老師的探索筆記 (3)  http://shs.ntu.edu.tw/shsblog/?p=32719

4. 生物學在講甚麼?–周成功老師的探索筆記 (4)  http://shs.ntu.edu.tw/shsblog/?p=32731

5. 生物學在講甚麼?–周成功老師的探索筆記 (5)  http://shs.ntu.edu.tw/shsblog/?p=32737

6. Ratcheting the evolution of multicellularity. Science 346: 426-7; 2014.

7. How did multicellular life evolve? Astrobiology Magazine Feb. 5, 2015

You may also like...

發表迴響

你的電子郵件位址並不會被公開。 必要欄位標記為 *